
Document generated by Confluence on Sep 19, 2010 14:18 Page 1

Project : Interactive Voice and Video in Browsers

This page last changed on Sep 19, 2010 by fluffy.

By David Mathieson, Matthew Penning, Niall McDonnell, John O'Reilly, Joe Hildebrand

Abstract

This document reflects early work to help design web standards for supporting interactive
communications from inside web browsers.

1. Introduction

Audio and video is becoming more and more part of the browser, but to enable Unified Communications
there are still some elements that need to be added.  Below we list some of the Unified Communications
use cases to help illustrate the current needs, and follow that up with proposals on how this could be
accomplished.

2. Use Cases

2.1 Browser WebPhone

2.1.1 Use case: Call control

A browser WebPhone should have the ability to establish and control calls with other IP endpoints.  Those
IP endpoints include phones, soft clients, gateways and IP enabled PBXs.  Call control should include
the ability to make and receive calls; terminate, hold and resume calls; transfer calls; participate in
conference calls.

These call control abilities should not require a plug-in, nor should they require additional ports to be
opened on the client device.

2.1.2 Use case: Open media stream

A browser WebPhone should be able to open a secured or unsecured two-way media stream to another
phone device. This should not require a browser plug-in.

2.1.3 Use case: Incoming call event

  A browser WebPhone should be able to receive call control events in real-time. Such events might
include new incoming call, call held, call ended, call transfer requested etc.

  Real-time call control events should reliably pass through firewalls and proxy servers and should not
require a browser plug-in or additional ports.

2.1.4 Use case: Visual notification of incoming call

 Incoming call notifications should be visible to the user, even if the browser window is minimized.  A user
must be able to work in different applications without fear of missing incoming calls.

2.1.5 Use case: Cross tab co-ordination, cross-process co-ordination

  Modern web applications are often spread across multiple tabs of a browser. A browser webphone that is
part of a multi-tab web application should behave as a single phone with each tab behaving as a separate
line.



Document generated by Confluence on Sep 19, 2010 14:18 Page 2

    2.1.5.1 Call control

     A WebPhone user should have full call control capabilities on each tab of the same application - hold/
resume, conference, transfer, end call etc.   

     Incoming call notifications should come into each tab of a web application.

    2.1.5.2 Multiple Tabs of the same application = Multiple lines

     If, while on a call in the first tab of an application, a user takes a call in a second tab, the call on the
first tab should automatically go on hold.

     If the user resumes the call on the first tab, the active call on the second tab should automatically go
on hold.   

     The author of a web application that uses a browser Web Phone should not need to write the logic to
manage a phone across multiple tabs.

    2.1.5.3 Security

     A browser WebPhone instance should not be shared between different web applications. The browser
should recognize the distinction between two pages of the same web application and pages of different
web applications. 

     2.1.5.4 Cross process

      CTI applications are common in businesses. For example, a call center might application might
automatically route a call to the next available agent.

      A browser WebPhone should expose a secure CTI interface so that other applications, including other
web applications, can control it.

2.1.6 Use case: Device selection

  A browser WebPhone user should be able to select microphone, speakers and camera from the list of
supported devices on the machine.

2.1.7 Use case: Unattended control

  A browser WebPhone user will often work in another application while on a phone or video call. The
user must be able to quickly access call control features such as hold, mute and end call, even when not
focused on the WebPhone application.

 One suggestion is that the WebPhone be able to supply control from the system tray.

2.1.8 Use case: No UI

  Users are accustomed to closing the main window of a softphone or a chat client when not engaged
in a call or chat session. The softphone or chat application continues to run in the background, but
without a UI, thereby reducing visual clutter for the user.   When an incoming call or chat is received, the
communication session window again becomes visible.

 It should be possible to hide a browser WebPhone application, while keeping the browser application
running.

2.1.9 Use case: Ability to share desktop as part of a call

  A browser WebPhone user should be able to share a document or share their desktop with the person on
the other end of the call, without requiring a browser plug-in.

2.1.10 Use case: Ring tones

  A browser WebPhone needs the ability to select ring tones and control volume of ringtones.



Document generated by Confluence on Sep 19, 2010 14:18 Page 3

2.2 Video voicemail

2.2.1 Use case: Play Video/Audio stream recorded via Phone

 A browser based video/voicemail application should allow a user to playback a recorded video/audio
message that was recorded from an incoming Phone device. This should be enabled without the need
for third party plugins, and should allow the user to seek forward/backward within the message without
requiring the entire stream to be downloaded.

Flexibility in supported codecs is important here to minimize the amount of video processing required on
the mail server. In particular,  H.264 is a common video codec used in telephony - if it were to become
royalty free, having H.264 support in browsers would be ideal.

2.2.2 Use case: Record Video/Audio

 A browser based video/voicemail application should allow users to compose and reply to video/voicemail
within the browser without requiring external plugins.  The browser should support capturing and sending
an audio/video stream to a media server to support this.

2.2.3 Use case: Record Video/Audio over low bandwidth connection

A browser based video/voicemail application should support recording video/audio over low bandwidth
connections.  Video and/or audio quality can be degraded if necessary to support this, by different codecs
or lower bitrate versions of codecs.

2.2.4 Use case: Visual notification of new voice/video message

Notification of new mail should be visible to the user, even if the browser window is minimized.  A user
must be able to work in different applications without fear of missing important messages.

2.2.5 Use case: Monitor message recording

In a browser based voice/video mail application, users would like the ability to listen/watch incoming
video/voice mail being recorded via a phone.  This is analogous to listening to your answering machine
while someone is leaving a message.

To support this would require notification that a message recording has been initiated, and the ability to
request a fork of the incoming stream to monitor it. 

2.2.6 Use case: Device selection

 A voice/video mail user should be able to select microphone, speakers and camera from the list of
supported devices on the machine.

2.2.7 Use case: Better quality video/audio when higher bandwidth available

 In situations where high bandwidth is available, codecs to support improved audio/video quality are
desirable. Some video codecs also support variable bit rate encoding, in which case dynamic bit rate
selection would be desirable.

2.2.8 Use case: Secure message playback

Many enterprise customers require secure, encrypted, voicemail. Playback of secure messages is
currently difficult in a browser environment since there isn't a good way to do decryption using standard
mechanisms (such as JavaScript). To facilitate this, a browser mechanism for decrypting audio/video
streams is needed that does not require a plugin.



Document generated by Confluence on Sep 19, 2010 14:18 Page 4

2.3 Online Meetings

2.3.1 Ability to initiate voice/video conference

2.3.2 Ability to share documents to meeting participants

2.3.3 Ability to share desktop

2.4 Notifications

As well as the incoming call and voicemail notifications mentioned in section 2.1 and 2.2 it is also
necessary to be able to receive and provide visual indication of the following UC notifications:

• IM
• Location Update
• Presence Update
• Meeting Reminder
• 'Social' updates (e.g. Microblog, Activity Stream, Watchlist)

For incoming IMs the same toast experience needs to exist for IMs as for voice/video calls.  The browser
can be minimized during an IM conversation and the user needs to be notified of new IMs and of new IM
conversations.

Regarding presence updates it should also be possible to:

• share presence updates between tabs or browser instances
• share presence state with other applications, both browser and non browser based.

2.5 OS Integration (cover both mobile and desktop)

Users are accustomed to running Unified Communications applications such as Cisco Unified Personal
Communicator, Microsoft's Office Communicator and the Skype client, in a "system tray mode" whereby
the client's window is not visible but the application continues to run and can be interacted with through
a system tray icon. In this way the phone does not take up screen real estate but it is still available to
receive incoming calls. 

A browser WebPhone, on a desktop or mobile browser, should have the ability to run at system start-up,
to run without requiring that the main browser window be visible, and to create a system tray entry that
will allow the user interact with the phone.

 

3. Enabling Technologies

3.1 Media 

 
Current Deficiencies

• HTML5 <audio> and <video> tags currently only address 1-way progressive download of media
• Voice codec (SPEEX, G.711, G.729) support in browsers is limited
• Inconsistency in video codecs supported by current browsers
• No mechanism to get access to devices or get local IP address
• No mechanism to encrypt/decrypt media streams
• No mechanism to get list of support codecs (although there is a way to try codecs in order inside an

audio or video tag)

Proposal 

• Browsers to support some common subset of royalty free codecs



Document generated by Confluence on Sep 19, 2010 14:18 Page 5

Need ability for browsers to support many codecs but have a minimal subset that is known to work. The
minimal subset needs to be easily shippable by all browser vendors with likely implies a royalty free
codec. Recommend minimal subset consists of iLBC (RFC 3951), G.711, and standardized wideband codec
out of IETF CODEC WG. Given the rapid advances in royalty free video codecs, such as webm effort, we
expect to soon see a royalty free video codec from a widely recognized SDO.

• Mechanism to install codecs not supported out of the box by a browser

This will allow codec development and improvement to occur independent of the browser, and make it
possible to adapt to more existing back end media servers that may not yet support the standard codecs.

• API to support device selection, notifications, control and media origination/termination
• API to get access to local IP address
• API to adjust video brightness
• API to for encryption and decryption, integrity, and identity of media stream
• API for QOS
• API to enable/disable bitrate adjustment
• Support for RTP(s) media streams

 
API

getSupportedCodecs() - for an audio or video tag this would return a list of all supported codecs

This is desirable so we can check formats up front without trying to play the different types within a video
tag.  This will help to provide better information to users and for logging purposes.

The current mechanism would also, it seems force a load of the media stream before providing an error
message, and also not provide a nice way to capture that event and react to it differently in JavaScript:

<video controls>  
  <source src="foo.ogg" type="video/ogg">  
  <source src="foo.mp4">  
  Your browser does not support the <code>video</code> element.  
</video> 

setBrightness(level) - for a video tag this would set the brightness adjustment level to help in viewing
video that may be too light or dark

Since we are going to be dealing with video created in different many environments, being able to adjust
the brightness is desirable.

setAutoBitrateAdjust() - enable/disable auto bitrate adjustment based on bandwidth (when available)

Might need some other adjustment parameters, but this is a start (i.e. set thresholds and so forth)
 

3.2 Phone API 

 
 
Current Deficiencies
 

• Call control not currently addressed in HTML5 standards.

 
 
Proposal
 

• Embed call control stack (SIP/Jingle) in browser (for information, Cisco's call control stack image is
approximate 1MB for unoptimized devices and closer to 100KB for space optimized devices).

• Registration/login is done on a per user basis.  No explicit device configuration is required in the API.
• Addition of  <phone> and <call> elements and associated JavaScript APIs to the HTML standards

providing call control functionality in the browser.



Document generated by Confluence on Sep 19, 2010 14:18 Page 6

 
API

The following is an outline of the JavaScript API for the <phone> element. Note that this set of methods
is a subset of the full API, but these represent a workable set of operations for a phone that supports a
single simultaneous call. Multiple call support entails, amongst other things, extending the API to identify
the call to which the operation applies:-

Methods

login(username, password)Log the phone in

logout()Log the phone out

call(number)Make a call to the specified number

answer()Answer an incoming call

endCall()End the existing call

hold()Hold the current call

resume()Resume a currently held call

sendDTMF(digit)Send a DTMF digit

mute(audio|video|all)Mute the current call

getCall()Return details of the current call:-

• exists
° true|false

• callId
• callState

° Created|Dialing|Progressing|Alerting|Connected|Held|Disconnected|Failed
• callType

° Incoming|Outgoing
• mediaState

° NotStarted|Ok|TempFail|PermFail
• callingPartyNumber
• callingPartyName
• calledPartyNumber
• calledPartyName
• capabilities

° HoldCall,ResumeCall,SendDtmf,Terminate
• callMuted

° true|false

EventsIn addition to the above methods, the following callback handlers can be registered with the phone
to receive asynchronous events:

registerPhoneStateChangeCallback(function(state))Listen for phone status change updates.
callback passes state parameter: Ready|Registering|Idle|Connected|Busy

registerCallStateChangeCallback(function(callInfo))Listen for changes to the call's state
Callback passes callInfo parameter which is the same as getCall() method above

registerLoginFailureCallback(function(reason))Register for login failures
Callback passes reason parameter: Ok|Unknown|NoDevicesFound|NoRegistrarConfigured|
ConfigFetchError|AuthenticationFailure

 
 

Code Samples

The code example below illustrates how a softphone could be used via HTML-only. The code consists of
a top-level <phone> element which contains attributes related to the configuration and display of the



Document generated by Confluence on Sep 19, 2010 14:18 Page 7

softphone. It contains a sub-element that's based on the proposed stream API that is used to render
the media. By making this a subelement of <phone>, it should be possible (and certainly desirable) for
the implementation to automatically 'wire up' the media and signaling. Similarly, the <phone> element
contains an inner <device> element that could be used for user device selection. This is a description of
the attributes for <phone>:-

type - the signaling implementation type - either sip or jingle (possibly with sub-types)
registrar - the IP address of the SIP registrar
ringer - the ID of the DOM element on the page that represents the audio to be played when the phone
rings
dialpad - the ID of the DOM element that represents the phone's dialpad (if needed)
conversation - the ID of the DOM element that's displayed when a conversation is active
incoming - the ID of the DOM element that's displayed when an incoming call is received
onCallStateChange - event handler for call state change events. There will be other events related to
registration and media state changes, errors etc.

Everything here is of course fully scriptable, so for more advanced users it will be more likely that much
of this behavior would be achieved via JavaScript instead. Of course, there will be a rich set of events
available to allow users to trap things like call state changes, media changes, registration state etc.

The three <div> elements further down the page are user implementations of the various UI elements
of the phone - this enables the user to define whatever CSS and behavior that they want. However, the
inner <button> elements could be automatically wired up to the phone controls by using the "name"
attribute.

<phone type="sip" registrar="10.23.45.122" onCallStateChange="myCallStateChangeHandler()"
       ringer="myringer" dialpad="mydialpad"
       conversation="myconversation" incoming="myincoming">

        <stream type="audio/g711">
                Unable to create Media!
        </stream>

        <device type=media></device>
</phone>

<!-- standard HTML5 <audio> element -->
<audio id="myringer" src="ringring.mp3" loop="loop"></audio>

<div id="mydialpad">
        <!-- can use standard <button> elements - value attribute is used to define the dialed digit -->
        <button value="0">0</button>
        <button value="1">1</button>
        <button value="2">2</button>
        <!-- etc etc -->
</div>

<div id="myconversation">
        <div class="mystyle" id="myid"></div> <!-- custom content -->

        <!-- Button values are standard and used to automatically "do the right thing" -->
        <button value="end">End Call</button>
        <button value ="mute">Mute</button>
        <button value="holdtoggle">Hold</button>
        <button value="dialpadtoggle">Dialpad</button>
</div>

<div id="myincoming">
        <div class="myotherstyle" id="myotherid"></div> <!-- custom content -->
        <!-- Button value is standard and used to automatically "do the right thing" -->
        <button value="answer">Answer</button>

http://dev.w3.org/html5/html-device/#stream
http://dev.w3.org/html5/html-device/#devices


Document generated by Confluence on Sep 19, 2010 14:18 Page 8

</div>

 
Another "declarative" enhancement would be to be able to initiate a phone call by using HTML tags. The
following code has two versions, one with a new <call> element and another using an <a> element with
a new 'sipto' URL type.

<!-- version with specific <call> element
     <call> element has a 'phone' attribute that specifies the DOM ID of the <phone> to be used
     to place the call.
-->
<ul>
        <li><call phone="myphone" to="sip:fluffy@cisco.com">Cullen Jennings</call></li>
        <li><call phone="myphone" to="sip:jooreill@cisco.com">John O'Reilly</call></li>
        <li><call phone="myphone" to="sip:damathie@cisco.com">Dave Mathieson</call></li>
</ul>

<!-- version that uses <a> element analogous to mailto
     Note: In this version it's not as easy to specify the ID of the <phone> element
-->
<ul>
        <li><a "sipto:fluffy@cisco.com">Cullen Jennings</a></li>
        <li><a "sipto:jooreill@cisco.com">John O'Reilly</a></li>
        <li><a "sipto:damathie@cisco.com">Dave Mathieson</a></li>
</ul>

  

Thoughts on signaling

The idea of a phone built into the browser raises the question of what kind of signaling should be
supported. Obviously the main choices are SIP or Jingle, but building these into the browser raises
questions over compatibility and interoperability with different endpoints and registrars. However, the
functionally we are discussing here works in a widely interoperable way between existing SIP devices and
without building in a signaling protocol to the browser, it is hard to imagine how to provide an interface
that web developer could easily use to enable interface communications. The phone object like interfaces
above all require a signaling interface in the browser.

A more purist 'web' approach would be for signaling to be carried out using HTTP. This work has already
been prototyped with some success, but it requires the design and implementation of a new API that
mirrors functionality of the existing protocols. Developing a protocol that deals with the range of things
required to have RTP interoperability with existing systems is very complex. Existing master slave control
protocols that have about the same level of functionality are MGCP (RFC3435), Megaco, and Cisco SCCP
protocol. All of these are relatively large and complex protocols.

One possible solution is to send SIP over HTTP. This would entail the deployment of code on the server
to pack and unpack the SIP messaging from HTTP, and to write a SIP stack in JavaScript. The advantage
here is that the SIP (or other signaling) stack can be updated as needed without requiring a new browser,
and it could be tailored as needed for the environment. So there could be a generic stack that supports
basic call functionality, but a more advanced vendor-specific stack made available for a more advanced
feature set. Most useful SIP stacks represent in the order of 10 to 100 person years of development effort
so the prospect of developing a useful SIP stack in JavaScript is a large and complex project.

3.3 Notifications

• HTML5 desktop notifications as currently implemented in Chrome are suitable for notification of
Unified Communication events to the user.

• Should investigate the possibilities of all applications, both web and non-web, sharing the same
notification framework.  For HTML5, this would mean that the implementation would detect the
system-level notification framework and use that if appropriate/available e.g. Growl on Mac.



Document generated by Confluence on Sep 19, 2010 14:18 Page 9

3.4 Cross-tab co-ordination

Current Deficiencies

HTML5 SharedWorkersprovide a good, general purpose solution to sharing memory between documents
and tabs. For example, a voicemail gadget, a phone gadget and an instant messaging gadget may all
share access to corporate directory presence. By sharing this information locally, the gadget author
reduces the number of server connections, the network traffic and local memory since the shared
presence state is not duplicated across the gadgets

A browser WebPhone should implicitly work across tabs of the same web application, with multiple tabs
acting as multiple lines. Each developer who integrates a WebPhone into his/her application should not
have to rewrite synchronization logic to have the webphone work seamlessly across tabs.

Proposal 

A browser should recognize that different pages can be part of the same application - either because they
are served from the same site, or because they share an "application key". A browser should then treat
the pages of an application that use a webphone, as separate lines of the same device.

Each tab of a web application should have call control access over calls on other tabs of the same web
application - the ability to hold/resume, conference, transfer, end call etc. 

At the same time, a phone running as a separate application in the same browser can not be allowed to
see what calls the other phones is making or access the media in the other virtual phone.

3.5 OS Integration

 Current Deficiencies

• Web Applications cannot request that they be started at system start-up.
• Web Applications cannot addd system tray entries
• Web applications cannot request that they run in a "micro" mode whereby they continue to run

when the browser's window is closed.

Proposal&

• must enable a web application to be started at system start-up
• must enable a web application to add a system tray entry
• must enable a web application to to run even when the browser window is closed

<!-- W3C widget configuration file used as an application configuration file-->
<widget id=http://webphone.org/webphone >

<icon src="http://webphone.org/webphone/systray.png"/>
<!-- addition to W3C widget configuration file -->
<system type="startup" systemTray="true" hideOnClose="true"/>

</widget>

<!-- additional event called when the user clicks the web application's system tray entry. In response to this
 the WebApplication might
offer a menu that will be rendered by the web browser over the status bar. -->

  interface SystemTrayCallback {
     void handleEvent();
  };

.

http://dev.w3.org/html5/workers/#shared-workers-introduction


Document generated by Confluence on Sep 19, 2010 14:18 Page 10

4. References

Device Element - http://www.whatwg.org/specs/web-apps/current-work/multipage/
commands.html#devices

Stream API - http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#stream-
api

Device APIs and Policy Working Group - http://www.w3.org/2009/dap/

HTML Media Capture - http://www.w3.org/TR/2010/WD-html-media-capture-20100720/

Beyond HTML5 - Conversational Voice and Video Implemented in WebKit GTK+ - https://
labs.ericsson.com/blog/beyond-html5-conversational-voice-and-video-implemented-webkit-gtk

Firefox 4 Audio Data API - https://wiki.mozilla.org/Audio_Data_API

Other Topics

• Privacy e.g. important that we have good visual indications of when camera/microphone goes on/off
• Security. Todays enterprises do you a "security in depth" approach but unfortunately the primary

security is provided by the "crunch outside, soft chewy middle model" that the firewalls provide.
Allowing the web browser to send arbitrary UDP packets, such at a data base attack, to any IP
address on the inside of the firewall is unacceptable. Forcing the media to go to the web site that
downloaded the web pages is also not acceptable due to the loss of audio quality this implies not to
mention the bandwidth required.

• Propose that the browser be allowed to send a fixed format "request to send" packet to any location.
If that location replies with an "OK to send", then SRTP or RTP media can be sent. The browser
would need to enforce this restriction. STUN could be used as the "request to send" and "OK to
send" signaling.

http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#stream-api
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#stream-api
http://www.w3.org/2009/dap/
http://www.w3.org/TR/2010/WD-html-media-capture-20100720/
https://labs.ericsson.com/blog/beyond-html5-conversational-voice-and-video-implemented-webkit-gtk
https://labs.ericsson.com/blog/beyond-html5-conversational-voice-and-video-implemented-webkit-gtk
https://wiki.mozilla.org/Audio_Data_API

